top of page
  • industrialinternetofthing

IIOT

The Industrial Internet of Things (IIoT) refers to interconnected sensors, instruments, and other devices networked together with computers' industrial applications, including, but not limited to, manufacturing and energy management. This connectivity allows for data collection, exchange and analysis, potentially facilitating improvements in productivity and efficiency as well as other economic benefits. The IIoT is an evolution of a Distributed Control System (DCS) that allows for a higher degree of automation by using cloud computing to refine and optimize the process controls.

The IIoT is enabled by technologies such as cyber security, cloud computing, mobile technologies, machine-to-machine, 3D printing, advanced robotics, big data, Internet of Things, RFID technology, and cognitive computing. Four of the most important ones are described below:


• Cyber-physical Systems (CPS): the basic technology platform for IoT and IIoT and therefore the main enabler to connect physical machines that were previously disconnected. CPS integrate the dynamics of the physical process with those of software and communication, providing abstractions and modeling, design, and analysis techniques for integrated the whole.


• Cloud computing: With cloud computing IT services can be delivered in which resources are retrieved from the Internet as opposed to direct connection to a server. Files can be kept on cloud-based storage systems rather than on local storage devices.


• Big data analytics: Big data analytics is the process of examining large and varied data sets, or big data.


• Artificial intelligence and machine learning: Artificial intelligence (AI) is a field within computer science in which intelligent machines are created that work and react like humans. Machine learning is a core part of AI, allows software to become more accurate with predicting outcomes without explicitly being programmed.


IIoT systems are often conceived as a layered modular architecture of a digital technology. The device layer refers to the physical components: CPS, sensors or machines. The network layer consists of physical network buses, cloud computing and communication protocols that aggregate and transport the data to the service layer, which consists of applications that manipulate and combine data into information that can be displayed on the driver dashboard. The top-most stratum of the stack is the content layer or the user interface.


The history of the IIoT begins with the invention of the programmable logic controller (PLC) by Dick Morley in 1968, which was used by General Motors in their automatic transmission manufacturing division. These PLCs allowed for fine control of individual elements in the manufacturing chain. In 1975, Honeywell and Yokogawa introduced the world's first DCSs, the TDC 2000 and the CENTUM system, respectively. These DCSs were the next step in allowing flexible process control throughout a plant, with the added benefit of backup redundancies by distributing control across the entire system, eliminating a singular point of failure in a central control room.


With the introduction of Ethernet in 1980, people began to explore the concept of a network of smart devices as early as 1982, when a modified Coke machine at Carnegie Mellon University became the first internet-connected appliance, able to report its inventory and whether newly loaded drinks were cold. As early as in 1994, greater industrial applications were envisioned, as Reza Raji described the concept in IEEE Spectrum as "[moving] small packets of data to a large set of nodes, so as to integrate and automate everything from home appliances to entire factories".


The concept of the internet of things first became popular in 1999, through the Auto-ID Center at MIT and related market-analysis publications. Radio-frequency identification (RFID) was seen by Kevin Ashton (one of the founders of the original Auto-ID Center) as a prerequisite for the internet of things at that point. If all objects and people in daily life were equipped with identifiers, computers could manage and inventory them. Besides using RFID, the tagging of things may be achieved through such technologies as near field communication, barcodes, QR codes and digital watermarking.


The current conception of the IIoT arose after the emergence of cloud technology in 2002, which allows for the storage of data to examine for historical trends, and the development of the OPC Unified Architecture protocol in 2006, which enabled secure, remote communications between devices, programs, and data sources without the need for human intervention or interfaces.


One of the first consequences of implementing the industrial internet of things (by equipping objects with minuscule identifying devices or machine-readable identifiers) would be to create instant and ceaseless inventory control. Another benefit of implementing an IIoT system is the ability to create a digital twin of the system. Utilizing this digital twin allows for further optimization of the system by allowing for experimentation with new data from the cloud without having to halt production or sacrifice safety, as the new processes can be refined virtually until they are ready to be implemented. A digital twin can also serve as a training ground for new employees who won't have to worry about real impacts to the live system.


The term industrial internet of things is often encountered in the manufacturing industries, referring to the industrial subset of the IoT. The industrial internet of things will enable the creation of new business models by improving productivity, exploiting analytics for innovation, and transforming the workforce.


While connectivity and data acquisition are imperative for IIoT, they are not the end goals, but rather the foundation and path to something bigger. Of all the technologies, predictive maintenance is an "easier” application, as it is applicable to existing assets and management systems. Intelligent maintenance systems can reduce unexpected downtime and increase productivity, which is projected to save up to 12% over scheduled repairs, reduce overall maintenance costs up to 30%, and eliminate breakdowns up to 70%, according to some studies. Industrial big data analytics plays a vital role in manufacturing asset predictive maintenance, although that is not the only capability of industrial big data. Cyber-physical systems (CPS) are the core technology of industrial big data and they will be an interface between human and the cyber world. Cyber-physical systems can be designed by following the 5C (connection, conversion, cyber, cognition, configuration) architecture, and they transform the collected data into actionable information, and eventually interact with the physical assets to optimize processes.


An IoT-enabled intelligent system of such capability has been demonstrated by the NSF Industry/University Collaborative Research Center for Intelligent Maintenance Systems (IMS) at University of Cincinnati on a band saw machine in IMTS 2014 in Chicago. Band saw machines are not necessarily expensive, but band saw belt expenses are enormous since they degrade much faster. However, without sensing and intelligent analytics, it can only be determined by experience when the band saw belt will break. The developed prognostics system can recognize and monitor the degradation of band saw belts even if the condition is changing, so that users can know in near real-time the optimal time to replace the belt. The developed analytical algorithms were realized on a cloud server and were made accessible via the Internet and on mobile devices.


Integration of sensing and actuation systems connected to the Internet can optimize energy consumption. It is expected that IoT devices will be integrated into all forms of energy consuming devices (switches, power outlets, bulbs, televisions, etc.) and be able to communicate with the utility supply company in order to effectively balance power generation and energy usage. Besides home based energy management, the IIoT is especially relevant to the Smart Grid since it provides systems to gather and act on energy and power-related information in an automated fashion with the goal to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity. Using advanced metering infrastructure (AMI) devices connected to the Internet backbone, electric utilities can not only collect data from end-user connections, but also manage other distribution automation devices like transformers and reclosers.


As of 2016, other real-world applications include incorporating smart LEDs to direct shoppers to empty parking spaces or highlight shifting traffic patterns, using of sensors on water purifiers to alert managers via computer or smartphone when to replace parts, attaching RFID tags to safety gear to track personnel and ensure their safety, embedding computers into power tools to record and track the torque level of individual tightening, and collecting data from multiple systems to enable the simulation of new processes.

35 views0 comments

Recent Posts

See All

IoT in Manufacturing

One of the most widely used definitions of advanced manufacturing involves the use of technology to improve products and/or processes, with the relevant technology being described as "advanced," "inno

IoT Technology

The Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other forms of hardware (such a

Industrial iot

Industrial IoT is becoming an emerging point of conversation, particularly within the industrial sector. It’s not just manufacturers that are realizing the true potential of having your entire process

bottom of page